共计 8464 个字符,预计需要花费 22 分钟才能阅读完成。
上一节把基本的思路理清楚了之后,接下来就开始代码的编写了。
其中要注意的也是爬虫编写中最头疼的问题,就是反爬措施,因为拉勾网对爬虫的反爬手段就是直接封IP,所以我们首先得自己维护一个代理IP池。
Scrapy基本架构
我们需要在Spiders里面编写爬虫的核心代码,然后在Item、Pipeline分别写入相应的代码,最后重写HttpProxyMiddleware
组件。
ip代理
网上有许多卖ip代理的,很贵,效果也不是特别理想,所以就自己撸了个抓取免费代理的包,代码在github上,具体用法在README中也有写。
好了,代理也有了,开始编写代码。
生成一个名为lagou_spider的项目:
scrapy startproject lagou_spider
Items.py
第一步先确定我们的数据结构,定义item
class LagouJobInfo(scrapy.Item):
"""docstring for LagouJobInfo"""
keyword = scrapy.Field()
companyLogo = scrapy.Field()
salary = scrapy.Field()
city = scrapy.Field()
financeStage = scrapy.Field()
industryField = scrapy.Field()
approve = scrapy.Field()
positionAdvantage = scrapy.Field()
positionId = scrapy.Field()
companyLabelList = scrapy.Field()
score = scrapy.Field()
companySize = scrapy.Field()
adWord = scrapy.Field()
createTime = scrapy.Field()
companyId = scrapy.Field()
positionName = scrapy.Field()
workYear = scrapy.Field()
education = scrapy.Field()
jobNature = scrapy.Field()
companyShortName = scrapy.Field()
district = scrapy.Field()
businessZones = scrapy.Field()
imState = scrapy.Field()
lastLogin = scrapy.Field()
publisherId = scrapy.Field()
# explain = scrapy.Field()
plus = scrapy.Field()
pcShow = scrapy.Field()
appShow = scrapy.Field()
deliver = scrapy.Field()
gradeDescription = scrapy.Field()
companyFullName = scrapy.Field()
formatCreateTime = scrapy.Field()
Spiders.py
导入所需要的包之后,定义一个类继承自Spider
# *-* coding:utf-8 *-*
from scrapy import Spider
import scrapy
import requests
import json
import MySQLdb
import itertools
import json
import urllib
from ..items import LagouJobInfo
from scrapy import log
class Lagou_job_info(Spider):
"""docstring for Lagou_job_info"""
name = 'lagou_job_info'
def __init__(self):
super(Lagou_job_info, self).__init__()
# 得到城市名
self.citynames = self.get_citynames()
# 职业类型
self.job_names = self.get_job_names()
# 两两组合城市名和职业类型
self.url_params = [x for x in itertools.product(self.citynames, self.job_names)]
self.url = 'http://www.lagou.com/jobs/positionAjax.json?px=default&city=%s&needAddtionalResult=false'
self.headers = {
'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8',
'Accept-Encoding':'gzip, deflate',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'
}
从上面可以看出大致流程是先从数据库中取出职位关键字和城市名,再用itertools.product
两两组合起来供start_requests
函数调用。
def start_requests(self):
'''从self.parms开始组合url并且生成request对象'''
for url_param in self.url_params:
url = self.url % urllib.quote(url_param[0])
yield scrapy.FormRequest(url=url, formdata={'pn':'1', 'kd':url_param[1]}, method='POST', headers=self.headers, meta={'page':1, 'kd':url_param[1]}, dont_filter=True)
start_requests
函数组合好url后生成Requests对象,由parse
函数进一步处理返回的Response
对象。
def parse(self, response):
'''进一步处理生成的request对象'''
try:
html = json.loads(response.body)
# 可能会出现安全狗的拦截,返回的并不是json数据
except ValueError:
log.msg(response.body, level=log.ERROR)
log.msg(response.status, level=log.ERROR)
# 需要重新生成当前的request对象
yield scrapy.FormRequest(response.url, formdata={'pn':str(response.meta.get('page')), 'kd':response.meta.get('kd')}, headers=self.headers, meta={'page':response.meta.get('page'), 'kd':response.meta.get('kd')}, dont_filter=True)
# 判断当前页是否有内容
if html.get('content').get('positionResult').get('resultSize') != 0:
results = html.get('content').get('positionResult').get('result')
for result in results:
item = LagouJobInfo()
item['keyword'] = response.meta.get('kd')
item['companyLogo'] = result.get('companyLogo')
item['salary'] = result.get('salary')
item['city'] = result.get('city')
item['financeStage'] = result.get('financeStage')
item['industryField'] = result.get('industryField')
item['approve'] = result.get('approve')
item['positionAdvantage'] = result.get('positionAdvantage')
item['positionId'] = result.get('positionId')
if isinstance(result.get('companyLabelList'), list):
item['companyLabelList'] = ','.join(result.get('companyLabelList'))
else:
item['companyLabelList'] = ''
item['score'] = result.get('score')
item['companySize'] = result.get('companySize')
item['adWord'] = result.get('adWord')
item['createTime'] = result.get('createTime')
item['companyId'] = result.get('companyId')
item['positionName'] = result.get('positionName')
item['workYear'] = result.get('workYear')
item['education'] = result.get('education')
item['jobNature'] = result.get('jobNature')
item['companyShortName'] = result.get('companyShortName')
item['district'] = result.get('district')
item['businessZones'] = result.get('businessZones')
item['imState'] = result.get('imState')
item['lastLogin'] = result.get('lastLogin')
item['publisherId'] = result.get('publisherId')
# item['explain'] = result.get('explain')
item['plus'] = result.get('plus')
item['pcShow'] = result.get('pcShow')
item['appShow'] = result.get('appShow')
item['deliver'] = result.get('deliver')
item['gradeDescription'] = result.get('gradeDescription')
item['companyFullName'] = result.get('companyFullName')
item['formatCreateTime'] = result.get('formatCreateTime')
yield item
# 当前页处理完成后生成下一页的request对象
page = int(response.meta.get('page')) + 1
kd = response.meta.get('kd')
yield scrapy.FormRequest(response.url, formdata={'pn':str(page), 'kd':kd}, headers=self.headers, meta={'page':page, 'kd':kd}, dont_filter=True)
需要注意的是,要实现翻页效果,我们使用了meta
参数,可以实现参数传递,具体用法请看文档。
到这儿,我们的Spiders核心代码完成。
Pipelines.py
Spiders返回的item需要保存到数据库,就需要通过定义管道功能来实现。
class LagouJobInfoDbPipeline(object):
'''将item保存到数据库'''
def process_item(self, item, spider):
conn = MySQLdb.connect(host='localhost', user='root', passwd='qwer', charset='utf8', db='lagou')
cur = conn.cursor()
sql = 'insert into job_info(keyword, companyLogo, salary, city, financeStage, industryField, approve, positionAdvantage, positionId, companyLabelList, score, companySize, adWord, createTime, companyId, positionName, workYear, education, jobNature, companyShortName, district, businessZones, imState, lastLogin, publisherId, plus, pcShow, appShow, deliver, gradeDescription, companyFullName, formatCreateTime) values(%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s, %s, %s,%s,%s,%s,%s,%s)'
key = ['keyword', 'companyLogo', 'salary', 'city', 'financeStage', 'industryField', 'approve', 'positionAdvantage', 'positionId', 'companyLabelList', 'score', 'companySize', 'adWord', 'createTime', 'companyId', 'positionName', 'workYear', 'education', 'jobNature', 'companyShortName', 'district', 'businessZones', 'imState', 'lastLogin', 'publisherId', 'plus', 'pcShow', 'appShow', 'deliver', 'gradeDescription', 'companyFullName', 'formatCreateTime']
for i in item.keys():
try:
item[i] = str(item.get(i).encode('utf-8'))
except:
item[i] = str(item.get(i))
finally:
pass
values = [item.get(x) for x in key]
try:
cur.execute(sql, values)
# log.msg('insert success %s' % item.get('keyword').encode('utf-8') + item.get('city').encode('utf-8') + item.get('positionName').encode('utf-8'), level=log.INFO)
except MySQLdb.IntegrityError:
# log.msg('insert fail %s' % item.get('keyword').encode('utf-8') + item.get('city').encode('utf-8') + item.get('positionName').encode('utf-8'), level=log.WARNING)
pass
conn.commit()
cur.close()
conn.close()
return item
Middlewares.py
定义中间件,把代理功能放进去。
class ProxyMiddleWare(object):
"""docstring for ProxyMiddleWare"""
def process_request(self,request, spider):
'''对request对象加上proxy'''
proxy = self.get_random_proxy()
request.meta['proxy'] = 'http://%s' % proxy
# print 'use proxy'
log.msg('-'*10, level=log.DEBUG)
log.msg(request.body.encode('utf-8'), level=log.DEBUG)
log.msg(proxy, level=log.DEBUG)
log.msg('-'*10, level=log.DEBUG)
# print request.headers
def process_response(self, request, response, spider):
'''对返回的response处理'''
# 如果返回的response状态不是200,重新生成当前request对象
if response.status != 200:
log.msg('-'*10, level=log.ERROR)
log.msg(response.url, level=log.ERROR)
log.msg(request.body.encode('utf-8'), level=log.ERROR)
log.msg(response.status, level=log.ERROR)
log.msg(request.meta['proxy'], level=log.ERROR)
log.msg('proxy block!', level=log.ERROR)
log.msg('-'*10, level=log.ERROR)
proxy = self.get_random_proxy()
# 对当前reque加上代理
request.meta['proxy'] = 'http://%s' % proxy
return request
return response
def get_random_proxy(self):
'''随机从文件中读取proxy'''
while 1:
with open('proxies.txt', 'r') as f:
proxies = f.readlines()
if proxies:
break
else:
time.sleep(1)
proxy = random.choice(proxies).strip()
return proxy
settings.py
BOT_NAME = 'lagou_job'
SPIDER_MODULES = ['lagou_job.spiders']
NEWSPIDER_MODULE = 'lagou_job.spiders'
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = 1
DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': None,
'lagou_job.middlewares.ProxyMiddleWare': 750,
'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware':None
}
ITEM_PIPELINES = {
'lagou_job.pipelines.LagouJobInfoDbPipeline': 300,
}
LOG_LEVEL = 'DEBUG'
LOG_ENABLED = True
这里需要注意的是放置中间件的顺序,为什么要给750?请看文档middleware,相信看完后印象一定会很深刻。
最后再编写一个启动脚本run_lagou_job_info.py
from scrapy import cmdline
cmd = 'scrapy crawl lagou_job_info -s JOBDIR=crawls/somespider-1'
cmdline.execute(cmd.split(' '))
实现了实时记录爬取进度,随时停止并且可以从上次的进度继续工作。
启动爬虫
python run_lagou_job_info.py
大功告成!
总结
其实爬虫并不难,难的是怎么绕过网站的反爬策略,找准思路,其实很简单。